Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690769

ABSTRACT

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents , Cathepsin A , Lung , Prodrugs , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Animals , Mice , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Cathepsin A/metabolism , Lung/metabolism , Cell Membrane Permeability/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacokinetics , Alanine/metabolism , Alanine/pharmacology , Permeability , ProTides
2.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562781

ABSTRACT

Human induced pluripotent stem cell (iPSC) derived alveolar organoids have emerged as a system to model the alveolar epithelium in homeostasis and disease. However, alveolar organoids are typically grown in Matrigel, a mouse-sarcoma derived basement membrane matrix that offers poor control over matrix properties, prompting the development of synthetic hydrogels as a Matrigel alternative. Here, we develop a two-step culture method that involves pre-aggregation of organoids in hydrogel-based microwells followed by embedding in a synthetic hydrogel that supports alveolar organoid growth, while also offering considerable control over organoid and hydrogel properties. We find that the aggregated organoids secrete their own nascent extracellular matrix (ECM) both in the microwells and upon embedding in the synthetic hydrogels. Thus, the synthetic gels described here allow us to de-couple exogenous and nascent ECM in order to interrogate the role of ECM in organoid formation.

3.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38328075

ABSTRACT

Bone Morphogenic Protein (BMP) signaling plays an essential and highly conserved role in axial patterning in embryos of many externally developing animal species. However, in mammalian embryos, which develop inside the mother, early development includes an additional stage known as preimplantation. During preimplantation, the epiblast lineage is segregated from the extraembryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling in mouse preimplantation is imprecisely defined. We show that, in contrast to prior reports, BMP signaling (as reported by SMAD1/5/9 phosphorylation) is not detectable until implantation, when it is detected in the primitive endoderm - an extraembryonic lineage. Moreover, preimplantation development appears normal following deletion of maternal and zygotic Smad4, an essential effector of BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extraembryonic cell types drives epiblast morphogenesis post-implantation.

4.
Science ; 382(6676): eadi5516, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38096290

ABSTRACT

Pioneer transcription factors (TFs), such as OCT4 and SOX2, play crucial roles in pluripotency regulation. However, the master TF-governed pluripotency regulatory circuitry was largely inferred from cultured cells. In this work, we investigated SOX2 binding from embryonic day 3.5 (E3.5) to E7.5 in the mouse. In E3.5 inner cell mass (ICM), SOX2 regulates the ICM-trophectoderm program but is dispensable for opening global enhancers. Instead, SOX2 occupies preaccessible enhancers in part opened by early-stage expressing TFs TFAP2C and NR5A2. SOX2 then widely redistributes when cells adopt naive and formative pluripotency by opening enhancers or poising them for rapid future activation. Hence, multifaceted pioneer TF-enhancer interaction underpins pluripotency progression in embryos, including a distinctive state in E3.5 ICM that bridges totipotency and pluripotency.


Subject(s)
Blastocyst , Cell Lineage , Chromatin , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , SOXB1 Transcription Factors , Animals , Mice , Blastocyst/cytology , Blastocyst/metabolism , Cells, Cultured , Chromatin/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics
5.
J Virol ; 97(12): e0127623, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37975674

ABSTRACT

ABSTRACT: Disease progression during SARS-CoV-2 infection is tightly linked to the fate of lung epithelial cells, with severe cases of COVID-19 characterized by direct injury of the alveolar epithelium and an impairment in its regeneration from progenitor cells. The molecular pathways that govern respiratory epithelial cell death and proliferation during SARS-CoV-2 infection, however, remain unclear. We now report a high-throughput CRISPR screen for host genetic modifiers of the survival and proliferation of SARS-CoV-2-infected Calu-3 respiratory epithelial cells. The top four genes identified in our screen encode components of the same type I interferon (IFN-I) signaling complex­IFNAR1, IFNAR2, JAK1, and TYK2. The fifth gene, ACE2, was an expected control encoding the SARS-CoV-2 viral receptor. Surprisingly, despite the antiviral properties of IFN-I signaling, its disruption in our screen was associated with an increase in Calu-3 cell fitness. We validated this effect and found that IFN-I signaling did not sensitize SARS-CoV-2-infected cultures to cell death but rather inhibited the proliferation of surviving cells after the early peak of viral replication and cytopathic effect. We also found that IFN-I signaling alone, in the absence of viral infection, was sufficient to induce this delayed antiproliferative response in both Calu-3 cells and iPSC-derived type 2 alveolar epithelial cells. Together, these findings highlight a cell autonomous antiproliferative response by respiratory epithelial cells to persistent IFN-I signaling during SARS-CoV-2 infection. This response may contribute to the deficient alveolar regeneration that has been associated with COVID-19 lung injury and represents a promising area for host-targeted therapeutic development.


Subject(s)
COVID-19 , Epithelial Cells , Interferon Type I , Lung , Humans , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Epithelial Cells/pathology , Epithelial Cells/virology , Interferon Type I/immunology , Lung/pathology , Lung/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Cell Line , Cell Proliferation
6.
NPJ Regen Med ; 8(1): 48, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689780

ABSTRACT

Alveolar type 2 (AT2) cells function as stem cells in the adult lung and aid in repair after injury. The current study aimed to understand the signaling events that control differentiation of this therapeutically relevant cell type during human development. Using lung explant and organoid models, we identified opposing effects of TGFß- and BMP-signaling, where inhibition of TGFß- and activation of BMP-signaling in the context of high WNT- and FGF-signaling efficiently differentiated early lung progenitors into AT2-like cells in vitro. AT2-like cells differentiated in this manner exhibit surfactant processing and secretion capabilities, and long-term commitment to a mature AT2 phenotype when expanded in media optimized for primary AT2 culture. Comparing AT2-like cells differentiated with TGFß-inhibition and BMP-activation to alternative differentiation approaches revealed improved specificity to the AT2 lineage and reduced off-target cell types. These findings reveal opposing roles for TGFß- and BMP-signaling in AT2 differentiation and provide a new strategy to generate a therapeutically relevant cell type in vitro.

7.
Proc Natl Acad Sci U S A ; 120(24): e2210113120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37279279

ABSTRACT

Using scRNA-seq and microscopy, we describe a cell that is enriched in the lower airways of the developing human lung and identified by the unique coexpression of SCGB3A2/SFTPB/CFTR. To functionally interrogate these cells, we apply a single-cell barcode-based lineage tracing method, called CellTagging, to track the fate of SCGB3A2/SFTPB/CFTR cells during airway organoid differentiation in vitro. Lineage tracing reveals that these cells have a distinct differentiation potential from basal cells, giving rise predominantly to pulmonary neuroendocrine cells and a subset of multiciliated cells distinguished by high C6 and low MUC16 expression. Lineage tracing results are supported by studies using organoids and isolated cells from the lower noncartilaginous airway. We conclude that SCGB3A2/SFTPB/CFTR cells are enriched in the lower airways of the developing human lung and contribute to the epithelial diversity and heterogeneity in this region.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Lung , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Stem Cells/metabolism , Cell Differentiation , Cell Lineage , Organoids , Epithelial Cells/metabolism
8.
bioRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205521

ABSTRACT

Alveolar type 2 (AT2) cells function as stem cells in the adult lung and aid in repair after injury. The current study aimed to understand the signaling events that control differentiation of this therapeutically relevant cell type during human development. Using lung explant and organoid models, we identified opposing effects of TGFß- and BMP-signaling, where inhibition of TGFß- and activation of BMP-signaling in the context of high WNT- and FGF-signaling efficiently differentiated early lung progenitors into AT2-like cells in vitro . AT2-like cells differentiated in this manner exhibit surfactant processing and secretion capabilities, and long-term commitment to a mature AT2 phenotype when expanded in media optimized for primary AT2 culture. Comparing AT2-like cells differentiated with TGFß-inhibition and BMP-activation to alternative differentiation approaches revealed improved specificity to the AT2 lineage and reduced off-target cell types. These findings reveal opposing roles for TGFß- and BMP-signaling in AT2 differentiation and provide a new strategy to generate a therapeutically relevant cell type in vitro .

9.
Development ; 149(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-36039869

ABSTRACT

Bud tip progenitors (BTPs) in the developing lung give rise to all epithelial cell types found in the airways and alveoli. This work aimed to develop an iPSC organoid model enriched with NKX2-1+ BTP-like cells. Building on previous studies, we optimized a directed differentiation paradigm to generate spheroids with more robust NKX2-1 expression. Spheroids were expanded into organoids that possessed NKX2-1+/CPM+ BTP-like cells, which increased in number over time. Single cell RNA-sequencing analysis revealed a high degree of transcriptional similarity between induced BTPs (iBTPs) and in vivo BTPs. Using FACS, iBTPs were purified and expanded as induced bud tip progenitor organoids (iBTOs), which maintained an enriched population of bud tip progenitors. When iBTOs were directed to differentiate into airway or alveolar cell types using well-established methods, they gave rise to organoids composed of organized airway or alveolar epithelium, respectively. Collectively, iBTOs are transcriptionally and functionally similar to in vivo BTPs, providing an important model for studying human lung development and differentiation.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Thyroid Nuclear Factor 1/metabolism , Alveolar Epithelial Cells , Cell Differentiation , Humans , Lung , Organoids
10.
Dev Cell ; 57(13): 1598-1614.e8, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35679862

ABSTRACT

The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.


Subject(s)
Mesenchymal Stem Cells , Organogenesis , Humans , Lung , Organoids , Wnt Signaling Pathway
11.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34413211

ABSTRACT

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Immunologic Factors/pharmacology , Lactoferrin/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Caco-2 Cells , Cell Line, Tumor , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Discovery , Drug Repositioning/methods , Epithelial Cells , Heparitin Sulfate/antagonists & inhibitors , Heparitin Sulfate/immunology , Heparitin Sulfate/metabolism , Hepatocytes , High-Throughput Screening Assays , Humans , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Vero Cells , COVID-19 Drug Treatment
12.
Sci Immunol ; 6(58)2021 04 07.
Article in English | MEDLINE | ID: mdl-33827897

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly induced by SARS-CoV-2 infection in lung epithelial cells. Infection of respiratory epithelial cells with SARS-CoV-2 generated activated complement component C3a and could be blocked by a cell-permeable inhibitor of complement factor B (CFBi), indicating the presence of an inducible cell-intrinsic C3 convertase in respiratory epithelial cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Genes induced by SARS-CoV-2 and the drugs that could normalize these genes both implicated the interferon-JAK1/2-STAT1 signaling system and NF-κB as the main drivers of their expression. Ruxolitinib, a JAK1/2 inhibitor, normalized interferon signature genes and all complement gene transcripts induced by SARS-CoV-2 in lung epithelial cell lines, but did not affect NF-κB-regulated genes. Ruxolitinib, alone or in combination with the antiviral remdesivir, inhibited C3a protein produced by infected cells. Together, we postulate that combination therapy with JAK inhibitors and drugs that normalize NF-κB-signaling could potentially have clinical application for severe COVID-19.


Subject(s)
COVID-19/metabolism , Complement Activation , Epithelial Cells/metabolism , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Lung/metabolism , MAP Kinase Signaling System , SARS-CoV-2/metabolism , COVID-19/pathology , Cell Line, Tumor , Complement C3a/metabolism , Complement Factor B/metabolism , Epithelial Cells/pathology , Humans , Lung/pathology
13.
J Mol Med (Berl) ; 99(4): 463-473, 2021 04.
Article in English | MEDLINE | ID: mdl-32857169

ABSTRACT

Organoids derived from human pluripotent stem cells (hPSCs) have emerged as important models for investigating human-specific aspects of development and disease. Here we discuss hPSC-derived organoids through the lens of development-highlighting how stages of human development align with the development of hPSC-derived organoids in the tissue culture dish. Using hPSC-derived lung and intestinal organoids as examples, we discuss the value and application of such systems for understanding human biology, as well as strategies for enhancing organoid complexity and maturity.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Organoids/cytology , Cell Differentiation , Cell Lineage , Forecasting , Germ Layers/cytology , Humans , Intestines/cytology , Lung/cytology , Organ Specificity
15.
bioRxiv ; 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-32577649

ABSTRACT

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10-15 years from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 FDA-approved compounds and clinical candidates, we identified 17 dose-responsive compounds with in vitro antiviral efficacy in human liver Huh7 cells and confirmed antiviral efficacy in human colon carcinoma Caco-2, human prostate adenocarcinoma LNCaP, and in a physiologic relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein classically found in secretory fluids, including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.

16.
Reproduction ; 160(1): V5-V7, 2020 07.
Article in English | MEDLINE | ID: mdl-32484160

ABSTRACT

The mouse preimplantation embryo is a paradigm for discovery of the molecular principles governing formation of specific cell types during development. In this Point of View Article, we show that conditions commonly used for ex vivo culture of preimplantation development are themselves antagonistic to a pathway that is critical for blastocyst lineage commitment.


Subject(s)
Blastocyst/physiology , Cell Culture Techniques/methods , Cell Lineage , Embryo, Mammalian/cytology , Embryonic Development , Animals , Embryo, Mammalian/physiology , Mice , Signal Transduction
17.
Bioessays ; 42(6): e2000006, 2020 06.
Article in English | MEDLINE | ID: mdl-32310312

ABSTRACT

An abundance of information about lung development in animal models exists; however, comparatively little is known about lung development in humans. Recent advances using primary human lung tissue combined with the use of human in vitro model systems, such as human pluripotent stem cell-derived tissue, have led to a growing understanding of the mechanisms governing human lung development. They have illuminated key differences between animal models and humans, underscoring the need for continued advancements in modeling human lung development and utilizing human tissue. This review discusses the use of human tissue and the use of human in vitro model systems that have been leveraged to better understand key regulators of human lung development and that have identified uniquely human features of development. This review also examines the implementation and challenges of human model systems and discusses how they can be applied to address knowledge gaps.


Subject(s)
Organogenesis , Pluripotent Stem Cells , Animals , Humans , Lung , Models, Biological
18.
Development ; 146(17)2019 09 06.
Article in English | MEDLINE | ID: mdl-31444221

ABSTRACT

In mice, pluripotent cells are thought to derive from cells buried inside the embryo around the 16-cell stage. Sox2 is the only pluripotency gene known to be expressed specifically within inside cells at this stage. To understand how pluripotency is established, we therefore investigated the mechanisms regulating the initial activation of Sox2 expression. Surprisingly, Sox2 expression initiated normally in the absence of both Nanog and Oct4 (Pou5f1), highlighting differences between embryo and stem cell models of pluripotency. However, we observed precocious ectopic expression of Sox2 prior to the 16-cell stage in the absence of Yap1, Wwtr1 and Tead4 Interestingly, the repression of premature Sox2 expression was sensitive to LATS kinase activity, even though LATS proteins normally do not limit activity of TEAD4, YAP1 and WWTR1 during these early stages. Finally, we present evidence for direct transcriptional repression of Sox2 by YAP1, WWTR1 and TEAD4. Taken together, our observations reveal that, while embryos are initially competent to express Sox2 as early as the four-cell stage, transcriptional repression prevents the premature expression of Sox2, thereby restricting the pluripotency program to the stage when inside cells are first created.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Muscle Proteins/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Blastocyst/cytology , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Ectopic Gene Expression , Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Female , Gene Expression Regulation, Developmental , Male , Mice/embryology , Mice, Transgenic , Muscle Proteins/genetics , Pluripotent Stem Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , TEA Domain Transcription Factors , Trans-Activators/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/metabolism , YAP-Signaling Proteins
19.
Methods Mol Biol ; 1893: 335-352, 2019.
Article in English | MEDLINE | ID: mdl-30565145

ABSTRACT

The HIPPO signaling pathway plays an early and essential role in mammalian embryogenesis. The earliest known roles for HIPPO signaling during mouse development include segregating fetal and extraembryonic lineages and establishing the pluripotent progenitors of embryonic stem (ES) cells. In the mouse early embryo, HIPPO signaling responds to multiple cell biological inputs, including cell polarization, cytoskeleton, and cell environment, to influence gene expression and the first cell fate decisions in development. Methods to monitor and manipulate HIPPO signaling in the mouse early embryo are fundamental to discovering mechanisms regulating pluripotency in vivo, but properties of the early embryo, such as small cell number and spherical architecture, pose unique challenges for signaling pathway analysis. Here, we share approaches for visualizing HIPPO signaling in mouse early embryos. In addition, these methods can be applied to visualize HIPPO signaling in other spherical or cystic structures comprised of relatively few cells, such as organoids, or for the examination of other signaling pathways in these contexts.


Subject(s)
Embryonic Development , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Animals , Cell Culture Techniques , Embryo Transfer , Embryo, Mammalian , Embryonic Development/genetics , Female , Gene Expression Regulation, Developmental , Genotype , Hippo Signaling Pathway , Immunohistochemistry , Male , Mice , Microscopy, Confocal , Protein Serine-Threonine Kinases/genetics
20.
Elife ; 72018 12 11.
Article in English | MEDLINE | ID: mdl-30526858

ABSTRACT

During mammalian development, the challenge for the embryo is to override intrinsic cellular plasticity to drive cells to distinct fates. Here, we unveil novel roles for the HIPPO signaling pathway in controlling cell positioning and expression of Sox2, the first marker of pluripotency in the mouse early embryo. We show that maternal and zygotic YAP1 and WWTR1 repress Sox2 while promoting expression of the trophectoderm gene Cdx2 in parallel. Yet, Sox2 is more sensitive than Cdx2 to Yap1/Wwtr1 dosage, leading cells to a state of conflicted cell fate when YAP1/WWTR1 activity is moderate. Remarkably, HIPPO signaling activity resolves conflicted cell fate by repositioning cells to the interior of the embryo, independent of its role in regulating Sox2 expression. Rather, HIPPO antagonizes apical localization of Par complex components PARD6B and aPKC. Thus, negative feedback between HIPPO and Par complex components ensure robust lineage segregation.


Subject(s)
Cell Lineage/genetics , Feedback, Physiological , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Protein Serine-Threonine Kinases/genetics , SOXB1 Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Cell Cycle Proteins , Cell Differentiation , Cell Movement , Embryo, Mammalian , Gene Dosage , Gene Expression Regulation, Developmental , Hippo Signaling Pathway , Mice , Mouse Embryonic Stem Cells/cytology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Pluripotent Stem Cells/cytology , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , SOXB1 Transcription Factors/metabolism , Signal Transduction , Trans-Activators , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...